Some more exact enumeration results for 1D cellular automata

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 204039
(http://iopscience.iop.org/0305-4470/20/12/049)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 20:46

Please note that terms and conditions apply.

## COMMENT

## Some more exact enumeration results for 1D cellular automata

Peter Grassberger<br>Physics Department, University of Wuppertal, Gauss-Strasse 20, D-56 Wuppertal 1, West Germany

Received 28 January 1987


#### Abstract

We present exact enumeration results for the elementary cellular automaton rules $22,30,45$ and 120 in Wolfram's notation. Obtained by a new algorithm, they improve previous results considerably. They confirm the existence of 'hidden' power-behaved long-range correlations in the patterns created by these rules.


Cellular automata (CA) [1] are spatially extended dynamical systems with discrete space, discrete time and with discrete variables at each spacetime point. Due to this discreteness, they are extremely easy to simulate and thus represent a very convenient tool for exploring the complexities in the behaviour of non-linear spatially extended systems. The basic surmise thereby is of course that features found in cellular automata can also be found in continuous systems. This hope is based on systems with few degrees of freedom, where complex behaviour is, e.g., much easier to find in maps than in flows, but where the phenomena in both are basically similar.

In this spirit, Wolfram [2] has initiated a systematic study of the simplest CA, called 'elementary' by him: one-dimensional arrays of 'spins' with just two states $s=0$ and 1 , and with deterministic evolutions

$$
\begin{equation*}
s_{i}^{\prime}=F\left(s_{i-1}, s_{i}, s_{i+1}\right) \tag{1}
\end{equation*}
$$

depending only on nearest neighbours. Here, $F(r, s, t)$ is one of the $2^{2^{3}}=256$ Boolean functions of three variables. Wolfram proposed to denote the resulting 256 elementary CA rules by the number obtained by regarding the array of eight bits

$$
\{F(1,1,1), F(1,1,0), F(1,0,1), \ldots, F(0,0,0)\}
$$

as its binary representation. Thus, for example, the rule

$$
s_{i}^{\prime}= \begin{cases}1 & \text { if exactly one of } s_{i-1}, s_{i} \text { and } s_{i+1} \text { is } 1 \\ 0 & \text { otherwise }\end{cases}
$$

becomes rule $[00010110]_{2}=22$, while $s_{i}^{\prime}=\left(s_{i-1}\right.$ XOR $\left.s_{i+1}\right)$ is rule 90 , and $s_{i}^{\prime}=\left(s_{i-1}\right.$ XOR $s_{i+i}$ ) AND NOT $s_{i}$ is rule 18.

In the following, we shall be interested in the long-time behaviour of elementary CA, following from random initial conditions on infinite lattices.

It was found in [3] that the long-time behaviour of most symmetric elementary rules $(F(r, s, t)=F(t, s, r)$ ) with the quiescent state $(F(0,0,0)=0)$ and with complex behaviour is similar to either rule 90 or rule 18 , and can be fairly easily understood. The single notable exception (except for rule 54 for which is not clear whether it should be judged as 'complex') is rule 22. Indeed, it was shown in [4] that patterns produced by rule 22 show rather striking long-range correlations-striking since they are not visible to the naked eye and yet seem strong enough to make the specific entropy vanish.

More precisely, let us denote by $p_{N}\left(s_{1} \ldots s_{N}\right)$ the probability to find at some randomly chosen position a given string $S=\left\{s_{1} \ldots s_{N}\right\}$ of length $N$ in the asymptotic invariant distribution. The average information stored in this string is then

$$
\begin{equation*}
H_{N, 1}=-\sum_{\{S\}} p_{N}(S) \log p_{N}(S) \tag{2}
\end{equation*}
$$

The spatial block entropy $h_{N}^{(x)}$ is defined as

$$
\begin{equation*}
h_{N}^{(x)}=H_{N-1,1}-H_{N, 1} \tag{3}
\end{equation*}
$$

and the specific (spatial) entropy finally is $h^{(x)}=\lim _{N \rightarrow \infty} h_{N}^{(x)}$.
In the same way, one could define temporal or diagonal specific entropies by regarding the probability distribution for strings at fixed space points or strings $\left\{s_{i \pm t}(t)\right\}$. More natural from the dynamical systems point of view are temporal and diagonal block entropies not obtained from single strings but from rectangular resp rhombic blocks of spatial width $N$ and temporal extent $T$. The temporal specific entropy is then defined [5] as

$$
\begin{equation*}
h^{(t)}=\lim _{N \rightarrow \infty} \lim _{T \rightarrow \infty} h_{N, T}^{(1)} \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
h_{N, T}^{(1)}=H_{N, T-1}-H_{N, T} \tag{5}
\end{equation*}
$$

and the diagonal specific entropy analogous [6]. It is easily seen that for the diagonal entropies the $N$ limit is already reached for $N=2$, for all elementary rules. For the rules we are interested in, the same is true for the temporal entropies [4, 7], whence we shall consider only the case $N=2$ in the following:

$$
\begin{equation*}
h^{(t)}=\lim _{T \rightarrow \infty} h_{2, T}^{(t)} \tag{6}
\end{equation*}
$$

The most striking result of [4] was that the block entropies $h_{N}^{(x)}$ and $h_{2, T}^{(1)}$ of rule 22 both seemed to converge algebraically to zero.

A somewhat less surprising but related result was found in [8] for the patterns generated by asymmetric rules of the structure

$$
\begin{equation*}
F(r, s, t)=r \operatorname{XOR} f(s, t) \tag{7}
\end{equation*}
$$

It is easily seen that for all such rules one invariant distribution is completely random, i.e. $p_{N}\left(s, \ldots, s_{N}\right)=1 / 2^{N}$ both for spatial strings at fixed time and for temporal strings at fixed position in space. Non-trivial spacetime patterns are generated by $f(s, t)=s$ OR $t$ (rule 30 ), $f(s, t)=s$ OR NOT $t$ (rule 45) and $f(s, t)=s$ AND $t$ (rule 120), and by the rules obtained from these by exchanging 0 and 1 . These patterns are shown in figure 1 . What is not evident from figure 1 but is indicated by more extensive simulations [7] is that the random state is a unique attractor and is thus the most relevant state for these rules.

While there cannot be thus any long-range spatial correlations for rules of this type, it was found in [8] that temporal and diagonal block entropies show also algebraic convergence, although not to zero. Instead, the temporal block entropies seem to converge to the exact lower bound $h^{(1)}=1$,

$$
\begin{equation*}
h_{2, T}^{(1)} \approx 1+\text { constant } / T^{\alpha} \tag{8}
\end{equation*}
$$



Figure 1. Parts of patterns created by rules $22(a), 30(b), 45(c)$ and $120(d)$ after random starts.
while the diagonal entropies along the diagonal $t=x+$ constant were compatible with an ansatz

$$
\begin{equation*}
h_{2, T}^{(+)} \approx h^{(+)}+\text {constant } / T^{\alpha} \tag{9}
\end{equation*}
$$

with the same constant $\alpha$ but with $0<h_{2, T}^{(+)}<1$.
We had to use Monte Carlo simulations in order to see the algebraic entropy decay in rule 22 . For rules 30,45 and 120 , on the other hand, exact enumerations were possible due to the fact that the invariant distribution is completely random. This has of course the advantage that no statistical errors are involved and one might hope to obtain better results by using sophisticated extrapolation techniques.

It is the purpose of this comment to report more enumerations. They concern primarily the temporal and diagonal entropies of rules 30,45 and 120 , but the trick used to make longer enumerations feasible is also applied in order to compute the density of ' 1 ' in patterns created by rule 22, $T$ time steps after a random start. In all cases, we again found evidence for strong long-range correlations, and in the former cases we support the previous evidence for algebraic decays. But we also find very strong deviations from any simple behaviour, similar to that found for rule 22 in [4]. As a consequence, we were not able to make any substantial progress in estimating critical exponents.

Assume we want to estimate the probabilities for all rhombic blocks of width $N=2$ and with some length $T$ for rule 30 , say. The straightforward way to do this consists in running through all $2^{2 T}$ initial configurations of the spatial string of length $2 T$ determining this block (see figure 2 for the case $T=6$ ). Due to the complete randomness of the invariant measure, all these have the same weight, thus giving the required probabilities immediately. This was done in [8], but it becomes unpractical for $T>12$ due to both storage and CPU time limitations (the results reported here demanded altogether $\sim 5 \mathrm{~h}$ CPU time on a CDC CYBER 170/175).


Figure 2. In order to estimate the probability for a configuration $S$ on the block of size $2 \times T$ shown in black, one can enumerate all configurations starting from the first line. A faster algorithm enumerates all configurations starting from the domain shaded in grey.

The trick allowing longer enumerations is based on the observation that out of the $2^{2 T}$ a priori possible block configurations only a small fraction occurs. Thus, it is much more efficient to enumerate, not initial configurations of spatial strings at constant time, but rather configurations on a combination of a rhombic block of length $T^{\prime}<T$ and a short spatial string of length $2\left(T-T^{\prime}\right)$. Such a domain with $T^{\prime}=4$ is shaded in grey in figure 2 . One has to know of course the possible configurations of length $T^{\prime}$ and their weights, but this can be done in the same way, using blocks of length $T^{\prime \prime}<T^{\prime}$, etc. This leads thus to a recursive evaluation of rhombic block configurations. Results obtained with $T^{\prime}=T-1$ are shown in table 1 .

Once the rhombic block probabilities are known, they can be used to evaluate the probabilities of rectangular blocks needed for temporal entropies, for rules satisfying equation (7). The straightforward way of estimating these would again consist of evaluating all initial configurations on a spatial string of width $2 T$ (see figure 3 ). This is considerably shortcut by enumerating instead configurations on the domain shaded in grey in figure 3, with results shown in table 2.

Table 1. Diagonal block entropies $h_{2 . T}^{(+)}$for rules 30,45 and 120 . The orientations of the blocks are as in figure 2.

| $T$ | Rule 30 | Rule 45 | Rule 120 |
| :--- | :--- | :--- | :--- |
| 1 | 2 | 2 | 2 |
| 2 | 1.155639 | 1.155639 | 1.155639 |
| 3 | 1.090018 | 0.922180 | 0.860488 |
| 4 | 1.026493 | 0.900554 | 0.740154 |
| 5 | 0.956246 | 0.886629 | 0.675540 |
| 6 | 0.904710 | 0.824482 | 0.613245 |
| 7 | 0.867407 | 0.786809 | 0.572954 |
| 8 | 0.842178 | 0.766299 | 0.549768 |
| 9 | 0.821049 | 0.741097 | 0.527908 |
| 10 | 0.802548 | 0.716884 | 0.508334 |
| 11 | 0.787901 | 0.699700 | 0.486023 |
| 12 | 0.774669 | 0.686505 | 0.471577 |
| 13 | 0.763143 | 0.673892 | 0.461366 |
| 14 | 0.753519 | 0.661258 | 0.451027 |
| 15 | 0.744128 | 0.650274 | 0.441830 |
| 16 | - | 0.640065 | 0.434135 |



Figure 3. Same as figure 2 but for rectangular instead of rhombic blocks. An even better starting domain for enumerations consists of the right-hand part of the grey domain plus the left-hand black column.

Table 2. Temporal block entropies for rules 30,45 and 120. The width of the blocks is $N=2$.

| $T$ | Rule 30 | Rule 45 | Rule 120 |
| :--- | :--- | :--- | :--- |
| 1 | 2 | 2 | 2 |
| 2 | 1.5 | 1.5 | 1.5 |
| 3 | 1.327820 | 1.327820 | 1.327820 |
| 4 | 1.295009 | 1.250000 | 1.263105 |
| 5 | 1.272318 | 1.228477 | 1.200468 |
| 6 | 1.252210 | 1.213131 | 1.166892 |
| 7 | 1.232916 | 1.196145 | 1.146228 |
| 8 | 1.215303 | 1.183207 | 1.127558 |
| 9 | 1.202200 | 1.171430 | 1.111934 |
| 10 | 1.189036 | 1.161035 | 1.099634 |
| 11 | 1.178823 | 1.151941 | 1.090168 |
| 12 | 1.169031 | 1.143791 | 1.082152 |
| 13 | 1.161467 | 1.136776 | 1.075578 |
| 14 | 1.154363 | 1.130359 | 1.069855 |
| 15 | 1.148627 | 1.124744 | 1.064674 |
| 16 | 1.143428 | 1.119710 | 1.060035 |
| 17 | 1.138938 | 1.115137 | 1.055972 |
| 18 | - | 1.110994 | 1.052382 |



Figure 4. In order to estimate the density of ' 1 ' at the black site (i.e. after $T$ iterations) one can enumerate all configurations starting from the shaded region, after having determined their weight.

Finally, if we want to estimate the density of ' 1 ' at finite times for rule 22, we can use as intermediate configurations those on the shaded domain in figure 4. Results are given in table 3.

Let us now discuss the results.
The shortest discussion applies to the results for rule 22 . The decay of the density reflects the two-point correlation in timelike directions. Our present findings are in perfect agreement with the results for spatial correlations of [4]: there are long-range two-point correlations which decay neither like a power nor like an exponential. Instead, the decay is very irregular, and cannot be fitted by any simple ansatz. In order to show this, we plot in figure 5 the difference between the density after $T$ iterations and the asymptotic density estimated in [4].

A more regular behaviour is found for the decay of block entropies. In figure 6, we show $h_{2, T}^{(1)}-1$ on a doubly logarithmic scale. According to equation (8), we should expect straight lines with slope $-\alpha$. This is indeed roughly what is found, and we estimate

$$
\alpha= \begin{cases}0.62 \pm 0.08 & (\text { rules } 30,45)  \tag{10}\\ 1.11 \pm 0.04 & \text { (rule } 120)\end{cases}
$$

where the quoted errors are just very crude subjective estimates. We have not performed a more sophisticated analysis since there are substantial deviations from equation (8), and it is not obvious how to take them into account.

The latter is even more true for the diagonal entropies. We show in figure 7 the differences $h_{2, T}^{(+)}-h_{2, T+1}^{(+)}$on a log-log scale. According to equation (9), this time we

Table 3. Densities of ' 1 ' in patterns created by rule 22, after $T$ iterations. The asymptotic Monte Carlo estimate is from [4].

| $T$ | Density of ${ }^{\prime} 1$ ' |
| ---: | :--- |
| 0 | 0.5 |
| 1 | 0.375 |
| 2 | 0.34375 |
| 3 | 0.3828125 |
| 4 | 0.3613281 |
| 5 | 0.3579102 |
| 6 | 0.3548584 |
| 7 | 0.3607483 |
| 8 | 0.3563613 |
| 9 | 0.3516407 |
| 10 | 0.3560824 |
| 11 | 0.3545738 |
| 12 | 0.3552635 |
| 13 | 0.3538610 |
| 14 | 0.3538622 |
| 15 | 0.3531522 |
| 16 | 0.3534672 |
| 17 | 0.3524912 |
| 18 | 0.3528083 |
| 19 | 0.3524303 |
| 20 | 0.3525523 |
| $\infty$ | $0.35096 \pm 0.00001$ |



Figure 5. Difference between the density of ' 1 ' in rule 22 after $T$ iterations and the asymptotic density.


Figure 6. Temporal block entropies (in bits) minus $1, h_{2, T}^{(t)}-1$, for rules 30 (circles), 45 (dots) and 120 (triangles), on a log-log scale. Equation (8) corresponds to a straight line with slope $-\alpha$.
should expect straight lines with slopes $-(1+\alpha)$. The data are clearly not in disagreement with this being the asymptotic behaviour, but the strong fluctuations render any detailed test impossible. If we accept equation (9), we estimate the diagonal entropies as

$$
h^{(+)} \approx \begin{cases}0.55 & (\text { rule 30) }  \tag{11}\\ 0.45 & (\text { rule 45) } \\ 0.25 & (\text { rule 120) } .\end{cases}
$$

Both equations (10) and (11) are in agreement with [8]. Unfortunately, however, the errors estimated have not decreased as much as was expected, since the deviations from simple laws are stronger than foreseen. But we have no reason to doubt that the power laws hold asymptotically, since these deviations are not systematic.


Figure 7. Decrements of diagonal block entropies, $\boldsymbol{h}_{2, T}^{(+)}-h_{2, T+1}^{(+)}$, for rules 30 (circles), 45 (dots) and 120 (triangles). On the $\log -\log$ scale used, a power-law convergence as in equation (9) would yield a straight line with slope $-(1+\alpha)$.

Summarising, we have again found evidence for strong long-range correlations for all four rules considered. Their structure seems simplest for rule 120 which seems the least complex of these rules. Entropies converge algebraically, while two-point correlations in rule 22 decay in a more complex fashion.

## References

[1] von Neumann J 1966 Theory of Self-reproducing Automata ed A W Burks (Chicago, IL: University of Illinois Press)
Wolfram S 1986 Theory and Applications of Cellular Automata (Singapore: World Scientific)
[2] Wolfram S 1983 Rev. Mod. Phys. 55601
[3] Grassberger P 1983 Phys. Rev. A 283666
[4] Grassberger P 1986 J. Stat. Phys. 4527
[5] Wolfram S 1984 Physica 10D 1
[6] Milnor J 1984 Institute of Advanced Study preprint
Sinai Yu G 1985 Commun. Math. Helv. 60173
[7] Wolfram S 1986 Adv. Appl. Math. 7123
[8] Grassberger P 1986 Int. J. Theor. Phys. 25907

