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COMMENT 

Some more exact enumeration results for ID cellular automata 

Peter Grassberger 
Physics Department, University of Wuppertal, Gauss-Strasse 20, D-56 Wuppertal 1, West 
Germany 

Received 28 January 1987 

Abstract. We present exact enumeration results for the elementary cellular automaton rules 
22, 30, 45 and 120 in Wolfram’s notation. Obtained by a new algorithm, they improve 
previous results considerably. They confirm the existence of ‘hidden’ power-behaved 
long-range correlations in the patterns created by these rules. 

Cellular automata (CA) [ 13 are spatially extended dynamical systems with discrete 
space, discrete time and with discrete variables at each spacetime point. Due to this 
discreteness, they are extremely easy to simulate and thus represent a very convenient 
tool for exploring the complexities in the behaviour of non-linear spatially extended 
systems. The basic surmise thereby is of course that features found in cellular automata 
can also be found in continuous systems. This hope is based on systems with few 
degrees of freedom, where complex behaviour is, e.g., much easier to find in maps 
than in flows, but where the phenomena in both are basically similar. 

In this spirit, Wolfram [2] has initiated a systematic study of the simplest CA, called 
‘elementary’ by him: one-dimensional arrays of ‘spins’ with just two states s = 0 and 
1 ,  and with deterministic evolutions 

(1) 
depending only on nearest neighbours. Here, F (  r, s, t )  is one of the 223 = 256 Boolean 
functions of three variables. Wolfram proposed to denote the resulting 256 elementary 
CA rules by the number obtained by regarding the array of eight bits 

s: = F(s,-1, sr, s,+1) 

{F(l, 1, 11, F(1,  1, O), F (1 ,0 ,1 ) , .  . ., F(O,O,O)} 
as its binary representation. Thus, for example, the rule 

if exactly one of sl-, , s, and s , , ~  is 1 {: otherwise 
s: = 

becomes rule [00010110]2 = 22, while s: = ( s , - ~  XOR s , + ~ )  is rule 90, and s: = XOR 
s,+,) AND NOT s, is rule 18. 

In the following, we shall be interested in the long-time behaviour of elementary 
CA, following from random initial conditions on infinite lattices. 

It was found in [3] that the long-time behaviour of most symmetric elementary 
rules ( F ( r ,  s, t )  = F ( t ,  s, r ) )  with the quiescent state ( F ( 0 ,  0,O) = 0) and with complex 
behaviour is similar to either rule 90 or rule 18, and can be fairly easily understood. 
The single notable exception (except for rule 54 for which is not clear whether it should 
be judged as ‘complex’) is rule 22. Indeed, it was shown in [4] that patterns produced 
by rule 22 show rather striking long-range correlations-striking since they are not 
visible to the naked eye and yet seem strong enough to make the specific entropy vanish. 
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More precisely, let us denote by p N ( s I  . . . s N )  the probability to find at some 
randomly chosen position a given string S = (s, . . . s N }  of length N in the asymptotic 
invariant distribution. The average information stored in this string is then 

HN,, = -1 P N ( S )  logp,(S). (2) 
{SJ 

The spatial block entropy h z )  is defined as 

h g ' =  H N - I . 1  - H , ,  (3) 

and the specific (spatial) entropy finally is h"' = 1imN+= h:'. 
In the same way, one could define temporal or diagonal specific entropies by 

regarding the probability distribution for strings at fixed space points or strings { s , e f  ( t ) } .  
More natural from the dynamical systems point of view are temporal and diagonal 
block entropies not obtained from single strings but from rectangular resp rhombic 
blocks of spatial width N and temporal extent T. The temporal specific entropy is 
then defined [5] as 

with 

(5) A( ' )  - 
N , T -  H N , T - I - H N , T  

and the diagonal specific entropy analogous [6]. It is easily seen that for the diagonal 
entropies the N limit is already reached for N = 2, for all elementary rules. For the 
rules we are interested in, the same is true for the temporal entropies [4, 71, whence 
we shall consider only the case N = 2 in the following: 

The most striking result of [4] was that the block entropies h:) and hi:k of rule 

A somewhat less surprising but related result was found in [8] for the patterns 
22 both seemed to converge algebraically to zero. 

generated by asymmetric rules of the structure 

F (  r, s, t )  = r XORf(s, t ) .  ( 7 )  

It is easily seen that for all such rules one invariant distribution is completely random, 
i.e. p N ( s , .  . . , s N )  = 1/2N both for spatial strings at fixed time and for temporal strings 
at fixed position in space. Non-trivial spacetime patterns are generated by f(s, t )  = s 
OR t (rule 30), f ( s ,  t )  = s OR NOT t (rule 45) and f ( s ,  t )  = s AND t (rule 120), and 
by the rules obtained from these by exchanging 0 and 1. These patterns are shown in 
figure 1. What is not evident from figure 1 but is indicated by more extensive simulations 
[7] is that the random state is a unique attractor and is thus the most relevant state 
for these rules. 

While there cannot be thus any long-range spatial correlations for rules of this 
type, it was found in [8] that temporal and diagonal block entropies show also algebraic 
convergence, although not to zero. Instead, the temporal block entropies seem to 
converge to the exact lower bound h"' = 1 ,  

(8) 
h ( f )  

2,T 1 +constant/ T" 
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Figure 1. Parts of patterns created by rules 2 2 ( a ) ,  30(b) ,  4 5 ( r )  and 120(d) after random 
starts. 

while the diagonal entropies along the diagonal t = x + constant were compatible with 
an  ansatz 

hb:; = h"'+ constant/ T" ( 9 )  
with the same constant CY but with O <  

We had to use Monte Carlo simulations in order to see the algebraic entropy decay 
in rule 22. For rules 30, 45 and 120, on the other hand, exact enumerations were 
possible due  to the fact that the invariant distribution is completely random. This has 
of course the advantage that no  statistical errors are involved and one might hope to 
obtain better results by using sophisticated extrapolation techniques. 

It is the purpose of this comment to report more enumerations. They concern 
primarily the temporal and  diagonal entropies of rules 30, 45 and 120, but the trick 
used to make longer enumerations feasible is also applied in order to compute the 
density of '1' in patterns created by rule 22, T time steps after a random start. In all 
cases, we again found evidence for strong long-range correlations, and in the former 
cases we support the previous evidence for algebraic decays. But we also find very 
strong deviations from any simple behaviour, similar to that found for rule 22 in [4]. 
As a consequence, we were not able to make any substantial progress in estimating 
critical exponents. 

Assume we want to estimate the probabilities for all rhombic blocks of width N = 2 
and with some length T for rule 30, say. The straightforward way to d o  this consists 
in running through all 22T initial configurations of the spatial string of length 2 T  
determining this block (see figure 2 for the case T = 6). Due to the complete randomness 
of the invariant measure, all these have the same weight, thus giving the required 
probabilities immediately. This was done in [8], but it becomes unpractical for T >  12 
due  to both storage and  CPU time limitations (the results reported here demanded 
altogether -5 h CPU time on a CDC CYBER 170/175). 

1. 
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Figure 2. In order to estimate the probability for a configuration S on the block of size 
2 x T shown in black, one can enumerate all configurations starting from the first line. A 
faster algorithm enumerates all configurations starting from the domain shaded in grey. 

The trick allowing longer enumerations is based on the observation that out of the 
22r a priori possible block configurations only a small fraction occurs. Thus, it is much 
more efficient to enumerate, not initial configurations of spatial strings at constant 
time, but rather configurations on a combination of a rhombic block of length T‘< T 
and a short spatial string of length 2( T - T’). Such a domain with T‘ = 4 is shaded in 
grey in figure 2. One has to know of course the possible configurations of length T’ 
and their weights, but this can be done in the same way, using blocks of length T” < T‘, 
etc. This leads thus to a recursive evaluation of rhombic block configurations. Results 
obtained with T’ = T - 1 are shown in table 1. 

Once the rhombic block probabilities are known, they can be used to evaluate the 
probabilities of rectangular blocks needed for temporal entropies, for rules satisfying 
equation (7 ) .  The straightforward way of estimating these would again consist of 
evaluating all initial configurations on a spatial string of width 2 T  (see figure 3). This 
is considerably shortcut by enumerating instead configurations on the domain shaded 
in grey in figure 3, with results shown in table 2. 

Table 1. Diagonal block entropies 
blocks are as in figure 2. 

for rules 30, 45 and 120. The orientations of the 

T Rule 30 Rule 45 Rule 120 

1 2 2 2 
2 1.155 639 1.155 639 1.155 639 
3 1.090 018 0.922 180 0.860 488 
4 1.026 493 0.900 554 0.740 154 
5 0.956 246 0.886 629 0.675 540 
6 0.904 710 0.824 482 0.613 245 
7 0.867 407 0.786 809 0.572 954 
8 0.842 178 0.766 299 0.549 768 
9 0.821 049 0.741 097 0.527 908 

10 0.802 548 0.716 884 0.508 334 
11 0.787 901 0.699 700 0.486 023 
12 0.774 669 0.686 505 0.471 577 
13 0.763 143 0.673 892 0.461 366 
14 0.753 519 0.661 258 0.451 027 
15 0.744 128 0.650 274 0.441 830 
16 - 0.640 065 0.434 135 
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c 

Figure3. Same as figure 2 but for rectangular instead of rhombic blocks. An even better 
starting domain for enumerations consists of the right-hand part of the grey domain plus 
the left-hand black column. 

Table 2. Temporal block entropies for rules 30,45 and 120. The width of the blocks is N = 2. 

T Rule 30 Rule 45 Rule 120 

1 2 2 2 
2 1.5 1.5 1.5 
3 1.327 820 1.327 820 1.327 820 
4 1.295 009 1.250 000 1.263 105 
5 1.272 318 1.228 477 1.200 468 
6 1.252 210 1.213 131 1.166 892 
7 1.232 916 1.196 145 1.146228 
8 1.215 303 1.183 207 1.127 558 
9 1.202 200 1.171 430 1.111 934 

10 1.189 036 1.161 035 1.099 634 
11 1.178 823 1.151 941 1.090 168 
12 1.169031 1.143 791 1.082 152 
13 1.161 467 1.136 776 1.075 578 
14 1.154 363 1.130 359 1.069 855 
15 1.148 627 1.124 744 1.064 674 
16 1.143 428 1.119 710 1.060 035 
17 1.138 938 1.115 137 1.055 972 
18 - 1.1 10 994 1.052 382 

Figure4. In order to estimate the density of ‘1’ at the black site (i.e. after T iterations) 
one can enumerate all configurations starting from the shaded region, after having deter- 
mined their weight. 
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Finally, if we want to estimate the density of ‘1’ at finite times for rule 22 ,  we can 
use as intermediate configurations those on the shaded domain in figure 4. Results 
are given in table 3. 

Let us now discuss the results. 
The shortest discussion applies to the results for rule 22. The decay of the density 

reflects the two-point correlation in timelike directions. Our present findings are in 
perfect agreement with the results for spatial correlations of [4]: there are long-range 
two-point correlations which decay neither like a power nor like an exponential. 
Instead, the decay is very irregular, and cannot be fitted by any simple ansatz. In  
order to show this, we plot in figure 5 the difference between the density after T 
iterations and the asymptotic density estimated in [4]. 

A more regular behaviour is found for the decay of block entropies. In figure 6, 
we show h$-  1 on a doubly logarithmic scale. According to equation (8), we should 
expect straight lines with slope -a. This is indeed roughly what is found, and we 
estimate 

0.62 f 0.08 (rules 30,45) 
1.11 izO.04 (rule 120) 

where the quoted errors are just very crude subjective estimates. We have not performed 
a more sophisticated analysis since there are substantial deviations from equation (8),  
and it is not obvious how to take them into account. 

The latter is even more true for the diagonal entropies. We show in figure 7 the 
differences h ~ ~ ~ - h ~ ~ ~ + l  on a log-log scale. According to equation ( 9 ) ,  this time we 

Table 3. Densities of ‘1’ in patterns created by rule 22, after T iterations. The asymptotic 
Monte Carlo estimate is from [4]. 

T Density of ‘1’ 

0 0.5 
1 0.375 
2 0.343 75 
3 0.382 8125 
4 0.361 3281 
5 0.357 9102 
6 0.354 8584 
7 0.360 7483 
8 0.356 3613 
9 0.351 6407 

10 0.356 0824 
11 0.354 5738 
12 0.355 2635 
13 0.353 8610 
14 0.353 8622 
15 0.353 1522 
16 0.353 4672 
17 0.352 4912 
18 0.352 8083 
19 0.352 4303 
20 0.352 5523 

CO 0.350 96 * 0.000 01 
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Figure 5. Difference between the density of '1' in rule 22 after T iterations and the asymptotic 
density. 
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Figure6. Temporal block entropies (in bits) minus 1, h $ -  1, for rules 30 (circles), 45 
(dots) and 120 (triangles), on a log-log scale. Equation (8) corresponds to a straight line 
with slope -a. 

should expect straight lines with slopes -( 1 + CY). The data are clearly not in disagree- 
ment with this being the asymptotic behaviour, but the strong fluctuations render any 
detailed test impossible. If we accept equation (9) ,  we estimate the diagonal entropies 
as 

0.55 (rule 30) 

[a (rule 120). 
h ( + ) =  0.45 (rule 45) (11) 

Both equations (10) and (11) are in agreement with [8]. Unfortunately, however, 
the errors estimated have not decreased as much as was expected, since the deviations 
from simple laws are stronger than foreseen. But we have no reason to doubt that the 
power laws hold asymptotically, since these deviations are not systematic. 
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Figure 7. Decrements of diagonal block entropies, hcd - h$f$+l, for rules 30 (circles), 45 
(dots) and 120 (triangles). On the log-log scale used, a power-law convergence as in 
equation (9) would yield a straight line with slope -( 1 +a). 

Summarising, we have again found evidence for strong long-range correlations for 
all four rules considered. Their structure seems simplest for rule 120 which seems the 
least complex of these rules. Entropies converge algebraically, while two-point correla- 
tions in rule 22 decay in a more complex fashion. 
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